Total No	o. of Questions : 8]	CE ATE N							
	or Questions : of	SEAT No. :							
P251	1,0021,230	[Total No. of Pages : 2							
[6003] 328									
T.E. (Civil Engineering)									
WATER SUPPLY ENGINEERING									
(2019 Pattern) (Semester-I) (301002)									
		, • • - • • -)							
	½ Hours]	[Max. Marks : 70							
Instructi	ions to the candidates:								
1)	Attempt Q.1 or Q.2, Q.3 or Q.4, Q.5 or Q.6, Q.7 or								
2)	Neat diagrams must be drawn wherever necessary.								
3)	Figures to the right indicates full marks.	9							
<i>4</i>)	Use of calculator is allowed.								
5)	Assume suitable data if necessary.								
<i>Q1</i>) a)	Explain in detail: Rapid Mixer and floccular	cor. 2 [6]							
Q1) a) b)									
0)	Assuming, inlet velocity as 1.2 m/s, and dete								
	clarifier as 30 min and 120 mins, respective								
		-							
	clarifier as $40\text{m}^3/\text{m}^2/\text{d}$, G in flocculator 40	Б							
	basin as 2.5m, determine diameter of inlet p	_							
		[6]							
c)	Discuss in details various mechanisms invo	-							
		[6]							
0.2\	OR CONTRACTOR								
Q2) a)	What is Flocculation? State factors affecting								
b)	. /								
	the filter is back washed for 30 minutes at the	A 4							
	minutes. Compute the average filtration rat								
	treated water used in washing and the rate								
- \	trough. The unit has 4 collecting troughs.	f DSC filter (Min 02 to be							
c)									
	explained)	[6]							

Q3) a) Enlist various methods of disinfection. Explain any two methods in detail.

- b) What is Residual Chlorine? Find the dose of chlorine and chlorine demand for water quantity of 40,000 m³/day. Chlorine used is 15 kg per day and residual chlorine after 10 minutes of contact time is 0.2 mg/lit. [6]
- c) Write with a neat sketch a detailed note on Reverse Osmosis. [2+3=5]

OR

Q4)	a)	Explain in detail: fluoridation & deflouridation of water. [6]					
	b)	Explain in detail: Super chlorination, Dechlorination, Prechlorination.[6]					
	c)	Write with a neat sketch: a detailed note on Electrodialysis. [2+3=5]					
05)	`	W ' 1 1 1 1 00		. 11	٠: a		
<i>Q5</i>)	a)	Write in detail: any 02 methods of water distribution. Support your answer					
	b)	with a suitable sketch. [8]					
	b)	Designed demand of a town is 3 MLD. It is pumped into an elevated service reservoir at a uniform rate from 5 am to 9am and 5pm to 9pm.					
		The variation in demand of water is given below. [10]					
		Period 5 am to	9 am to	5 pm to	9 pm to	12 am to	
		9 am	5 pm	9 pm	12 am	5 am	
		demand 40%	15%	30%	10% 39	05%	
		Determine the balancing Capacity of the reservoir.					
			OR		S.O		
Q6)	a)	Write difference between continuous and intermittent system. (Min 06					
	-	point of comparison are expected) [6]					
	b)	Calculate the storage capacity and dimensions of the tank to store rain					
		water for the given data:					
		Terrace area= 200 m ² , average annual rainfall=720 mm					
	,	Runoff coefficient= 0.8 Assume L:B=2, D=2m [6]					
	c)	Write a detailed note on detection and prevention of leakage. [6]					
<i>07</i>)	a)	Write a note on:					
~ /	,						
		 i) Gate valve, ii) Pressure relief valve Explain in detail Packaged WTP. [5] 					
	b)	Explain in detail Packaged WTP. [5]					
	c)	Explain with neat sketch: one pipe system partially ventilated [6]					
Q 8)	a)	Write a note on:				[6]	
~	ŕ	i) Reflux valve,			10° (C)		
		ii) Air relief valve			6		
	b)	Explain in detail with neat sketch: two pipe system. [5]					
	c)	Enlist initiatives taken by Government in water infrastructure. Explain					
	•	one of them in detail. [6]					